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Cost Elements are Often Correlated

• Spillover effects from one subsystem to another
– induce positive correlations among cost elements

– e.g., increase in airframe weight may require higher-thrust engines

• Schedule delays that necessitate paying overtime wage
rates induce positive correlation between manhours and
hourly wage rate

• Fungible costs that may be paid from one of several
accounts
– induce negative correlations across program phases

– e.g., spare parts may be purchased using either Procurement or
Operations and Maintenance (O&M) funds



Two General Methods to
Account for Correlations

• Analytical methods
– aggregate moments of underlying cost-element distributions

– use mathematical analysis to estimate the distribution of total cost

• Simulation methods
– generate random draws from each cost-element distribution

– use empirical methods to estimate the distribution of total cost



When Analytical Methods
are Practical

• Modelling only sum of components, e.g., total cost in a
Work Breakdown Structure (WBS)

• Total cost obtained only by addition of random variables
– rules out products, e.g., Costi = Pricei × Quantityi

• Under above conditions, a practical analytical method for
estimating distribution of total cost is:
– compute lower and upper bounds, mean, variance of sum from those of

components

– fit beta distribution to sum (this distribution is flexible enough to provide a
good fit in most instances)

– read percentiles of sum from fitted distribution



When Simulation Methods
are Necessary

• Difficult to compute mean and variance of cost components
– e.g., Costi = Pricei × Quantityi where price and quantity may be correlated

• Cost components are not additive
– e.g., completion times through a stochastic schedule network

– nodal logic may depend on minimum or maximum times, not sum

– difficult to compute mean and variance of total project cost and duration



Definitions

• Variance:

• Covariance:

• Correlation:

• Covariance matrix: •   Correlation matrix:
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Logical Consistency of
Correlation Matrix

• When more than two cost elements are involved, there are
constraints on possible values of correlations among them

• Example: three standardized (i.e., unit variance) cost
elements A, B, C with Corr(A,B) = Corr(B,C) = 0.9

– lowest possible correlation between A and C is 0.62

– if correlation below 0.62 is specified, linear combination of costs with
negative “variance” can be found

u when ρ = 0.5, the quantity D = .449A - .772B + .449C has “variance” of -0.047

• Inconsistencies can arise when
– correlations derived from (multiple) expert opinion

– not all correlations estimated from common data set



Positive-Definite Matrices

• What we are calling a logically consistent matrix is known
in the mathematics literature as a positive (semi-)definite
matrix

• A matrix ΣΣ is said to be positive definite if aT ΣΣ a > 0 for
every vector a ≠ 0
– if aT ΣΣ a ≥ 0 for all a, ΣΣ is said to be positive semi-definite

• If a vector random variable X has covariance matrix ΣΣ,
then Y = aX has covariance matrix aT ΣΣ a

– if ΣΣ is inconsistent, a linear combination of the variables in X can be found
with negative “variance,” i.e., aT ΣΣ a < 0



Checking for Logical Consistency

• The eigenvalues of ΣΣ must all be greater than or equal to 0

• An equivalent condition for positive-definite matrices is that
the principal minors of ΣΣ must all be greater than 0
– the kth principal minor is the determinant

of the upper left k × k submatrix, k =1,2,…,n:

• If one or more of the principal minors is equal to 0, the matrix
may or may not be positive semi-definite
– the conditions for positive semi-definiteness are much more complex

• If one or more principal minors < 0, the matrix is inconsistent
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Adjusting an Inconsistent Correlation
Matrix to Make it Consistent

• Suppose a cost analyst proposes a correlation matrix that
turns out to be inconsistent
– it should not  be used in estimating

– the analyst probably isn’t going to insist that his or her correlations are
exact anyway

• To help the analyst out at this point, we have developed a
method for adjusting a user-supplied “correlation” matrix
that is inconsistent

• Resulting matrix is guaranteed to be
–  positive semi-definite (i.e., consistent)

–  as “close” as possible to user-supplied matrix
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Adjusting the Correlation Matrix:
Example 1

• Analyst’s original correlation matrix:
– determinant = −0.06

• Analyst-supplied weighting matrix:
– same degree of confidence in all correlations

• Adjusted correlation matrix:
– eigenvalues = 2.52, 0.48, 0



• Corr(A,B) = Corr(B,C) = 0.9, known with certainty

• Corr(A,C) = 0.5, very uncertain

• Same original correlation matrix:

• New weighting matrix:

• Adjusted correlation matrix:
– eigenvalues = 2.62, 0.38, 0
– uncertain elements bear full burden

of adjustment
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Adjusting the Correlation Matrix:
Example 2



Methods for Simulating Correlated
Cost Elements

• Functional relationships
– Coleman and Gupta, TASC

– specified by linking spreadsheet cells via formulas, e.g., production cost
equals a (random) percentage of R&D cost of like item

– unless ample historical data are available to estimate multivariate
relationships, only simple pairwise relationships are likely to be specified

• Rank correlations
– Iman and Conover, Sandia National Laboratories, Communications on

Statistics, Simulation and Computation, Vol. 11, 1982

– reorders independently generated random variables to achieve desired
rank (Spearman) correlations

– implemented in @RISK and Crystal Ball



Methods for Simulating Correlated
Cost Elements (Continued)

• Completely specified distributions
– Johnson, Multivariate Statistical Simulation, Wiley, 1987

– complete multivariate structure must be specified; marginal distributions
and correlation matrix may not be enough

– correlations may already be determined given specification of marginals
u e.g., Dirichlet distributions (multivariate generalization of beta)

• Partially specified distributions
– Lurie and Goldberg, Management Science, Vol. 44, No. 2, 1998

– useful for partially-specified distributions (only marginals and correlations
need be specified)

– uses Pearson (i.e., product-moment) correlation matrix



Simulating Multivariate Normal
Distributions

• Statisticians have long known how to simulate multivariate
normal distributions using Cholesky decomposition

• First generate a k-dimensional vector of independent
normal random variables X~N(0,I)

• If X~N(0,I), then Y=LX~N(0,LLT)

• If we want to generate Y~N(0,ΣΣ), then need to find L such
that ΣΣ = LLT

– Cholesky decomposition is a simple method for finding a lower-triangular
matrix L such that ΣΣ = LLT

– once L has been determined, simply compute Y=LX



Limitations of Cholesky
Decomposition Method

• Method is valid for normal random variables only
– if X is multivariate normally distributed, then linear combinations Y will

also be normally distributed

• If method is misapplied to non-normal random variables
– user-supplied means, variances, correlations are preserved

– however, other distributional properties (e.g., modes, bounds, percentiles)
are not preserved

– if X1, X2,…, Xk have the “desired” (e.g., beta, triangular) distributions, the
linear combinations Y1, Y2,..., Yk will not inherit these distributions

• Method was at one time advocated by Aerospace Corp.
(Book & Young, 24th DODCAS, 1990) but has since been
disavowed



Lurie and Goldberg Method

• Adaptation of method originally proposed by Li and
Hammond (IEEE, 1975)

• Designed to preserve user-specified marginal distributions
and correlations among cost elements
– all bounds, moments, and percentiles preserved

• Simulations can be done in an Excel spreadsheet, using
Solver

• In some cases, it may be more practical to use a C++ or
FORTRAN program with a non-linear optimization routine
– large number of cost elements or Monte Carlo replications

– input cost distributions without closed-form inverses



Initial Steps to Run the
Lurie and Goldberg Method

• Generate n independent draws from a standard normal
distribution for each variable: X~N(0,I)

• Use Cholesky decomposition to transform independent
normals into multivariate normals with user-supplied
correlations:  Y = LX~N(0,LLT) = N(0,R)

– constrain diagonal elements of LLT to equal 1

– a positive semi-definite symmetric matrix with 1’s along the diagonal is a
correlation matrix

– a good initial choice for L is the Cholesky factor of desired correlation
matrix, LLT=R



Next Steps to Run the
Lurie and Goldberg Method

• Apply standard normal distribution function Φ to each

marginal normal distribution:
– results in correlated uniform random variables

– correlations will be different from those of original variables

• Invert each uniform distribution using the user-specified
marginal distributions Fi: Vi = Fi

-1(Ui)
– results in correlated random variables with user-specified marginal

distributions

– original correlations will be further distorted
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• Compute correlations (    ) among final transformed
variables (Vi, Vj)

• Compute a distance measure between user-supplied
correlation matrix and transformed correlation matrix
computed in the previous step:

• Iterate over elements of Cholesky factorization matrix (L)
to minimize the above distance measure
– constrain diagonal elements of LLT to equal 1

– requires a non-linear optimization routine such as Microsoft Excel Solver
or a specially-written FORTRAN or C++ program
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Final Steps to Run the
Lurie and Goldberg Method



• Find matrix L such that series of transformations

lead to random variables with desired correlations and
marginal distributions
– L: Cholesky factor transforms independent normals to correlated normals

– Φ: normal c.d.f. transforms correlated normals to correlated uniforms

– F-1: transforms correlated uniforms to correlated random variables with
desired marginal distributions F

• Because Φ and F-1 are non-linear transformations, the
correlations among the V’s will differ from the correlations
among the Y’s

• Iterate over L to achieve desired correlations among V’s

Concise Summary of Lurie and
Goldberg Method
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Theoretical Convergence
Guarantees

• Distance measure (between user-supplied and transformed
correlation matrices) is bounded below by zero and
possesses a minimum
– minimum distance is zero if user-supplied correlations can be theoretically

achieved by transforming correlated normals

– minimum distance may be strictly positive

• Algorithm is guaranteed to converge to global minimum if:
– distribution functions are all continuous

– Gauss-Newton or any standard quasi-Newton method is used to minimize
the distance measure

– starting values are sufficiently close to the minimum
u Cholesky factor of desired correlation matrix, LLT=R, is usually close enough



Performance of
Lurie and Goldberg Method

• Accuracy:
– preserves user-specified distributions and correlations, particularly for

large sample sizes

– validated on several multi-dimensional test problems

– performance does not degenerate with increasing number of cost elements

• Speed:
– depends on dimension of problem and CPU speed

– faster if user-supplied distributions have closed-form inverse
(e.g., triangular) rather than requiring numerical approximation (e.g., beta)



Example: First-Unit Cost WBS for
600-lb. UHF Satellite

All distributions assumed triangular, with the following parameters:

Cost ($K)

Lower Upper
Cost Element Bound Mode Bound
Attitude Control 1,676   1,942   2,453   
Electrical Power Supply 3,469   4,329   5,287   
Telemetry, Tracking and Command                860   1,014   1,671   
Structure and Thermal 366   596   963   
Apogee Kick Motor 201   314   402   
Digital Electronics 5,433   8,431   8,828   
Communications Payload 2,228   2,425   3,713   
Integration and Assembly 544   691   1,011   
Program Support 10,410   12,428   17,400   
Launch Operations and Orbital Support 639   914   1,030   



Simulated vs. Desired Distribution
of Program Support Cost

(Sample Size n=100)

Note:  Program Support is worst-fitting among all ten cost elements
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Simulated vs. Desired Correlations
(Sample Size n=100)
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Simulated vs. Desired Distribution
of Program Support Cost

(Sample Size n=1,000)

• Correlation matrix reproduced “exactly”

Note:  Program Support is worst-fitting among all ten cost elements
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Implementing Lurie-Goldberg

• Lurie-Goldberg can be implemented in an Excel
spreadsheet or in a higher-level programming language
(such as FORTRAN or C++)
– no user-friendly software currently available

u in-house version, which simulates multivariate triangular distributions,
contains about 250 lines of FORTRAN code including calls to commercially-
available factorization and optimization routines

– needs an interface to allow users to choose from several distributions

• Most practical environment would be as an add-in to Excel
or other spreadsheet package
– @RISK and Crystal Ball developers might be persuaded to include it if

there were sufficient interest



Simulation Software Vendors

@RISK:
Palisade Corporation
31 Decker Road
Newfield, New York 14867
1-800-432-7475
Fax: 607-277-8001
www.palisade.com

Crystal Ball:
Decisioneering Inc.
1515 Arapahoe Street, Suite 1311
Denver, Colorado 80202
1-800-289-2550
Fax: 303-534-4818
www.decisioneering.com
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